Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Front Public Health ; 10: 873633, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35801250

RESUMEN

Background: The worst SARS-CoV-2 outbreak in Sri Lanka was due to the two Sri Lankan delta sub-lineages AY.28 and AY.104. We proceeded to further characterize the mutations and clinical disease severity of these two sub-lineages. Methods: 705 delta SARS-CoV-2 genomes sequenced by our laboratory from mid-May to November 2021 using Illumina and Oxford Nanopore were included in the analysis. The clinical disease severity of 440/705 individuals were further analyzed to determine if infection with either AY.28 or AY.104 was associated with more severe disease. Sub-genomic RNA (sg-RNA) expression was analyzed using periscope. Results: AY.28 was the dominant variant throughout the outbreak, accounting for 67.7% of infections during the peak of the outbreak. AY.28 had three lineage defining mutations in the spike protein: A222V (92.80%), A701S (88.06%), and A1078S (92.04%) and seven in the ORF1a: R24C, K634N, P1640L, A2994V, A3209V, V3718A, and T3750I. AY.104 was characterized by the high prevalence of T95I (90.81%) and T572L (65.01%) mutations in the spike protein and by the absence of P1640L (94.28%) in ORF1a with the presence of A1918V (98.58%) mutation. The mean sgRNA expression levels of ORF6 in AY.28 were significantly higher compared to AY.104 (p < 0.0001) and B.1.617.2 (p < 0.01). Also, ORF3a showed significantly higher sgRNA expression in AY.28 compared to AY.104 (p < 0.0001). There was no difference in the clinical disease severity or duration of hospitalization in individuals infected with these sub lineages. Conclusions: Therefore, AY.28 and AY.104 appear to have a fitness advantage over the parental delta variant (B.1.617.2), while AY.28 also had a higher expression of sg-RNA compared to other sub-lineages. The clinical implications of these should be further investigated.


Asunto(s)
COVID-19 , SARS-CoV-2 , COVID-19/epidemiología , Humanos , Epidemiología Molecular , ARN , SARS-CoV-2/genética , Glicoproteína de la Espiga del Coronavirus , Sri Lanka/epidemiología
2.
PLoS Negl Trop Dis ; 16(6): e0010123, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35648794

RESUMEN

BACKGROUND: Rupatadine was previously shown to reduce endothelial dysfunction in vitro, reduced vascular leak in dengue mouse models and to reduce the extent of pleural effusions and thrombocytopenia in patients with acute dengue. Therefore, we sought to determine the efficacy of rupatadine in reducing the incidence of dengue haemorrhagic fever (DHF) in patients with acute dengue. METHODS AND FINDINGS: A phase 2, randomised, double blind, placebo controlled clinical trial was carried out in patients with acute dengue in Sri Lanka in an outpatient setting. Patients with ≤3 days since the onset of illness were either recruited to the treatment arm of oral rupatadine 40mg for 5 days (n = 123) or the placebo arm (n = 126). Clinical and laboratory features were measured daily to assess development of DHF and other complications. 12 (9.7%) patients developed DHF in the treatment arm compared to 22 (17.5%) who were on the placebo although this was not significant (p = 0.09, relative risk 0.68, 95% CI 0.41 to 1.08). Rupatadine also significantly reduced (p = 0.01) the proportion of patients with platelet counts <50,000 cells/mm3 and significantly reduced (p = 0.04) persisting vomiting, headache and hepatic tenderness (p<0.0001) in patients. There was a significant difference in the duration of illness (p = 0.0002) although the proportion of individuals who required hospital admission in both treatment arms. Only 2 patients on rupatadine and 3 patients on the placebo developed shock, while bleeding manifestations were seen in 6 patients on rupatadine and 7 patients on the placebo. CONCLUSIONS: Rupatadine appeared to be safe and well tolerated and showed a trend towards a reducing proportion of patients with acute dengue who developed DHF. Its usefulness when used in combination with other treatment modalities should be explored. TRIAL REGISTRATION: International Clinical Trials Registration Platform: SLCTR/2017/024.


Asunto(s)
Dengue , Dengue Grave , Animales , Ciproheptadina/efectos adversos , Ciproheptadina/análogos & derivados , Ciproheptadina/uso terapéutico , Dengue/tratamiento farmacológico , Método Doble Ciego , Humanos , Incidencia , Ratones , Dengue Grave/epidemiología , Resultado del Tratamiento
3.
PLoS One ; 17(4): e0265220, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35377884

RESUMEN

As different SARS-CoV-2 variants emerge and with the continuous evolvement of sub lineages of the delta variant, it is crucial that all countries carry out sequencing of at least >1% of their infections, in order to detect emergence of variants with higher transmissibility and with ability to evade immunity. However, due to limited resources as many resource poor countries are unable to sequence adequate number of viruses, we compared to usefulness of a two-step commercially available multiplex real-time PCR assay to detect important single nucleotide polymorphisms (SNPs) associated with the variants and compared the sensitivity, accuracy and cost effectiveness of the Illumina sequencing platform and the Oxford Nanopore Technologies' (ONT) platform. 138/143 (96.5%) identified as the alpha and 36/39 (92.3%) samples identified as the delta variants due to the presence of lineage defining SNPs by the multiplex real time PCR, were assigned to the same lineage by either of the two sequencing platforms. 34/37 of the samples sequenced by ONT had <5% ambiguous bases, while 21/37 samples sequenced using Illumina generated <5%. However, the mean PHRED scores averaged at 32.35 by Illumina reads but 10.78 in ONT. This difference results in a base error probability of 1 in 10 by the ONT and 1 in 1000 for Illumina sequencing platform. Sub-consensus single nucleotide variations (SNV) are highly correlated between both platforms (R2 = 0.79) while indels appear to have a weaker correlation (R2 = 0.13). Although the ONT had a slightly higher error rate compared to the Illumina technology, it achieved higher coverage with a lower number or reads, generated less ambiguous bases and was significantly less expensive than Illumina sequencing technology.


Asunto(s)
COVID-19 , SARS-CoV-2 , COVID-19/diagnóstico , COVID-19/virología , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Reacción en Cadena en Tiempo Real de la Polimerasa , SARS-CoV-2/genética , Secuenciación Completa del Genoma/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...